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AN APPROACH TO THE PROGRAMMING OF BIASED
REGRESSION ALGORITHMS

Richard F. Gunst

Southern Methodist University
Dallas , Texas 75275

ABSTRACT

Due to the near nonexistence of computer algorithms for cal-

culating estimators and ancillary statistics that are needed for

biased regression methodologies , many users of these methodologies

are forced to write their own programs . Brute-force coding of

such programs can result in a great waste of computer core and

computing time, as well as inefficient and inaccurate computing

techniques. This article proposes some guides to more effir.ient

programming by taking advantage of mathematical similarities

among several of the more popular biased regression estimators.

1. INTRODUCTION

Regression data analysts currently face a serious computing

problem in their efforts to utilize biased regression techniques.

On the one hand, there is a vast amount of evidence in scientific

publications that biased regression procedures are preferable to

ordinary least squares estimation when the predictor variables are

multicollinear (e.g., Dempster , Schatzoff, and Wermuth (1977) and
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Gunst and Mason (1977b)). Ridge Regression (Hoerl and Kennard
(1970)), Principal Component Regression (Massy (1965), Marquardt

(1970)), Latent Root Regression (Hawkins (1973), Webster, Gunst,

and Mason (1974)), and Shrunken Estimators (James and Stein (1961),

Mayer and Wilike (1973)) encompass a wide variety of popular biased

regression methodologies that have been proposed as alternates to

unbiased least squares estimation.

Countering the avowed need for biased regression techniques,

on the other hand, is a dearth of computer programs in the stan-

dard program libraries (BMDP (Dixon, 1975), SPSS (Nie, et al.,

1975), etc.) that the data analyst can access to perform the

required calculations. Many users of biased regression techniques,

given the time lag between the advent of new biased regression

procedures and the introduction of appropriate computer software,

are forced to code their own algorithms. Most of these users are

not primarily computer programming experts but acquire sufficient

knowledge of a programming language such as FORTRAN to be able to

write software needed in their research. It is to these users

that this article is addressed.

The general theme of this article is a discussion of similar-

ities inherent in the biased estimators listed above and some of

the more useful diagnostic measures as well. Biased regression

methodologies employ estimators which, although appearing quite

different, can be expressed as functions of common variables.

Some of these estimators are so similar when reexpressed in terms

of these common variables that several authors have grouped them

into “families” (e.g., Hocking, Speed, and Lynn (1976), Gunst and

Mason (1977b)). By taking advantage of the mathematical similar-

ities of the estimators, core storage requirements and computing

time can be lessened.

2. INPUT / DIAGNOSTICS

The basic input to a regression program is an (n x 1) raw

response vector, Y~ , and an (n x p) raw data matrix of predictor

12 :.
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variables, X ’ = [X e . ] .  Large core requirements can be necessitated
jf ~~* and X~ are to be stored and retained during all program cal-

culations. For virtually all the computations except the calcula-

tion of residuals , however , only summary statistics and pairwise
correlations of the (p+l) input variables are needed. Thus only

these statistics need be stored by the program. The elements of

Y* and X* can be stored on peripheral mass storage devices and

only called for during initial calculations and the computation

of residuals; when not needed , the arrays can be returned to the

peripheral storage units.

It is well-documented that for most regression computations

some form of standardization is desirable (e.g., Marquardt and

Snee (1975)). Let V and X denote the “unit length” standardiza-

tion of !* and X*:

y = (y * y *)/ d  x = (x~ — x*)/di 1. y ii ii j  j

— 
n n
E = n

1 E x~ ,
i=l 1 

i=l 3~)

d = { E (Y~ — y *) 2}
1’~
2 

d . = { E (Xe . —

i=l 
1 

i=1 ~~

Arrays containing the means, ~~* and 9, root sums of squared
deviations, d and d., correlations between the response and pre-

dictor variables, elements of X’Y, and correlations between pairs

of predictor variables, elements of X ’X , then contain the informa—

tion needed for the calculation of biased regression estimators.

These arrays also contain valuable diagnostic information regard-

ing associations among the predictor variables.

Routinely, the means and standard deviations of the input

variables and the arrays x’Y and X ’X should be output for regres—

sion data. The means and standard deviations yield summary infor-

mation about the location and dispersion of the input variables

which can aid in assessing whether the data collected is
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— representative of the process or phenomenon under study. Pairwise

correlations indicate the strength of linear associations between

two variables. In particular, large pairwise correlations among

the predictor variables alert the user to the possibility of

strong multicollinearities which might have an adverse effect on

least squares estimation and variable selection techniques (for a

survey of the problems associated with multicollinearities , see

Mason, Gunst, and Webster (1975))..

Latent roots and vectors of X’X provide additional informa-

tion on mu].ticolliriearities, particularly multicollinearities

involving more than two predictor variables (and, as we shall see

in the next section, form one basis for the expression of biased

estimators as a family). Define the latent roots, ~ P.2
< P . ,  and the corresponding latent vectors , 

~l’ ~2’ 
, V , of

X’X by

(X’X — £ .I)V. = 0 j = 1, 2, ..., p

Latent vectors corresponding to latent roots that are near zero

identify multicollinearities among the predictor variables.

Specifically , large elements of these latent vectors indicate

which variables are involved in multicollinearities and the nature

of the individual multicollinearities (for a detailed illustration

of the use of latent roots and vectors in the detection of multi—

collinearities see Gunst and Mason (l977a)).

An additional diagnostic measure that is useful in assessing

multicollinearities is the variance inflation factor (VIF) of each

predictor variable (Marquardt (1970), llarquardt and Snee (1975)).

The VIF of the jth predictor variable is the jth diagonal element

of (XIX) l. If X is an orthogonal matrix all the VIF equal 1.0

since X’X = (X ’ X ) 1 
= I, the (p X p) identity matrix. The more

in” ~:icol1inear the predictor variables , the larger are the VIF for

the variables involved in the multicollinearities. Values of the

VIF larger than 10, or everr as large as 6 , indicate strong multi—

collinearities and potential difficulties with least squares

estimation.
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Rather than computing (X X) 1 

from a separate algorithm in

order to obtain the VIF, the latent roots and vectors of X ’X can

be used instead. From the relationship

p
X1X = VLV ’ = P. V V’ , (2.1)r- r— rr= 1

it follows immediately that

(X ’x)~~ = VL 1V ’ = 

r~l 
~~ V V ’ , (2.2)

where V = 

~
y1’ ~2’ 

. ,  V ]  and L = diag(P.
1, P.2, . . . ,  P. ). Thus

if C = (X’ X) 1, the jth VIF is given by

1 2C.. = 2. V . . (2.3)
r=l 

r ~r

By taking advantage of the mathematical property (2 . 1 ) ,  there is
no need to compute nor store (X’X) 1 once the latent roots and

vectors of X ’X are obtained.

Other informative summary and diagnostic information such as
the minimum and maximum of each input variable, two variable

plots, or measures of how influential each data point is on the

estimation of the regression coefficients (e.g. Cook (1977))

could also be computed or available as optional output . Any or
all of these diagnostic measures could be indispensable for proper
analysis and interpretation of a regression data set. All should

be available to the user.

3. ESTIMATORS

The five estimators mentioned in the Introduction are defined

mathematically in the following equations , all of which employ

standardized input variables. Least squares (LS) estimators are

given by

~LS 
= (X I X) 1X I Y* = d ( x I x ) ’X IY  . (3.1)

_ _ _ __ _ _ _ _ _  -~~~~~ 
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For some k > 0 , (simple) ridge regression (RR ) estimators can be
written as

= d (X’X + kI)
1XIY . (3.2)

A principal component (PC) estimator which deletes the first s

components (obvious alterations can be made if subsets other than

the first s are to be deleted) can be obtained as

~pc = d~ (X’X)~ X ’Y (3.3)

where (X 1 X) + 
= VL+VI and L~ = diag(0, 0, . . . ,  0, &

~~1~ 
P.~~2, . . .,

P. ). Shrunken estimators (SE) can be calculated by

~SE 
= = gd~ (X’X)

1X’Y , (3.4)

where 0 < g < 1. Finally, latent root estimators (LR) are func-

tions of the latent roots, A < A < ... < A , and the corre—o -  1- - p
sponding latent vectors, y ,  y

1
,..., y ,  of the (p+l) by (p+l)

matrix A l A , where A = [Y:X]. (This matrix is already available

from the initial arrays since

A ’ A = I l  li x]

[x’~ x’x]

and the same algorithm used to calculate the latent roots and

vectors of X i x can be used to calculate those of A ’A). For ease

of notation let y = (y . :6~ ) wh~.re 6 = (y1., 
~2j~ 

~~~~~~~

Then the latent root estimator can be written as

B = d E f 6 , (3.5)-LR Y r  r-r

where f = — y A 1/(Zy2 A~~) and the summations arc t aken  over allr orr q Oqq
subscripts for which y .  and are not simultaneously close to

zero.

Equations (3.1) to (3.5) appear to indicate that several

matrix inversions and large storage requirements are needed to

calculate all the biased estimators listed. Actually, apart from

~~~~~ -~—-——-.~.e’-.- 
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the initial arrays mentioned in Section 2, only the latent roots

and vectors of X 1 X and A’A need be computed and stored. All five

estimators can be expressed in the general form

B = d E h i n  , (3.6)
r r—r

where the hr are appropriately defined univariate variables and

the in are latent vectors of either X’X or A ’A. Specifically , hr
and 

~r 
are defined as follows for the five estimators:

LS: 
~
1
r 

= 

~r ~ 
h
r 

= £ 1V’X’Y r = 1,2,...

RR: 
~r 

= 

~r ~ 
hr 

= 
r
4 ’Y~

X ’X r =

PC: in = v , h = 0 r = 1,2,...—r -r r 

~;
1v~x ’~ r = s+l , . . .,p  ( 3 .7 )

SE: in = 

~r ~ 
hr 

= gP.r
1
V XIY r = 1,2,...

L,R : m 6 , h = ) 0  y~~~~0 a nd A ~~~ O—r -r r or r
I f otherwiser

Not only are large core storage requirements reduced by
using (3.6) and (3 .7 )  since (X ’X) 1, (X ’ X + kI) 1, and (X’X)~ do

not need to be retained , but computing time is shortened in at

least two ways. First, V X ’Y appears in several of the 1-i in

(3.7) but each of these p variables need only be computed once.

Secondly, if one wishes to examine several choices of k for RR or

several selections of s for PC, for example, repeated calculation

of (X ’X + kI) 1 and (X’X)~ and then and 
~~~ 

through (3.2) and

(3.3) need not be accomplished. It is computationally quite simple

and relatively fast to alter k and s in (3.7) and calculate the

estimators using (3.6).

4. CONCLUDING REt~b\RKS

Other useful  statistics such as variable selection measures

can be expressed uniformly ~just as the estimators in the previous

section. One should seek such expressions when writing statistical

2~ ~~~~~ ~~~
.
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software in order to take advantage of reduced storage and com-

puting time capabilities. Not only will reductions in storage

and computing time result in monetary savings, but the data

analyst will find that the computer programs so written will also

be able to process much larger data sets than if the suggestions

made in this paper were not followed. Several hundred observations

on a moderate amount of predictor variables can be a prohibitively

large number if 1* , X* , (X ’X) 1
, (X’X + kI) 1, etc. must be stored

for each computing run.
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